Subroutines for some plasma surface interaction processes: physical sputtering, chemical erosion, radiation enhanced sublimation, backscattering and thermal evaporation
نویسندگان
چکیده
A suite of FORTRAN subroutines/functions to generate data using empirical formulas for physical sputtering of monoatomic targets for any elemental incident ion (atom), chemical erosion of graphite, Radiation Enhanced Sublimation (RES) of graphite, the number and energy backscattering coefficients for any elemental incident ion (atom) on a compound target and thermal evaporation of graphite is presented. Since chemical erosion, RES and thermal evaporation depend on the surface temperature of graphite, a subroutine implementing the 1-D heat diffusion equation to determine the temperature of any plasmafacing graphite surface is implemented. As an example to illustrate the use of these subroutines/functions, a simple model for the erosion of a plasma-facing surface, consisting of a simple collisionless sheath model, a 1-dimensional steady state heat diffusion model and 0-dimensional steady state particle balance at the target is developed and a sample listing of the program is presented.
منابع مشابه
Physical and chemical erosion studies of lithiated ATJ graphite
Lithium evaporation treatments for ATJ graphite tiles in the National Spherical Torus Experiment (NSTX) have shown dramatic improvements in plasma performance increasing the viability of lithium as Plasma Facing Component (PFC) material. In order to understand the complex system of lithiated ATJ graphite, studies of physical and chemical erosion of plain and lithiated ATJ graphite are conducted...
متن کاملKinematic and thermodynamic effects on liquid lithium sputtering
The lithium-sputtering yield from lithium and tin-lithium surfaces in the liquid state under low-energy, singly charged particles as a function of target temperature is measured by using the IIAX (Ion-surface Interaction Experiment) facility. Total erosion exceeds that expected from conventional physical sputtering after accounting for lithium evaporation for temperatures between 200 and 400 oC...
متن کاملCollisional and thermal effects on liquid lithium sputtering
The lithium sputtering yield from lithium and tin-lithium surfaces in the liquid state under bombardment by low-energy, singly charged particles as a function of target temperature is measured by using the Ion-surface Interaction Experiment facility. Total erosion exceeds that expected from conventional collisional sputtering after accounting for lithium evaporation for temperatures between 200...
متن کاملCell damaging by irradiating non-thermal plasma to the water: Mathematical modeling of chemical processes
Recently non-thermal plasma (NTP) is applied for many therapeutic applications. By NTP irradiating to the tissues or cell-lines, the water molecules (H2O) would be also activated leading to generate hydrogen peroxide (H2O2). By irradiating plasma to bio-solution, its main output including vacuum UV to UV causes the photolysis of H2O leading to generat...
متن کاملComputer- Control of Surface Science Experiments with Labview
A LabVIEW 2009-based remote and process control program for an ultra-high vacuum system and a variety of surface science experiments is presented. The apparatus consists of five individual recipients for sample preparation, surface analysis, scanning tunneling microscopy and a central chamber connecting them by means of gate-valves. All processes like electron-beam heating, ion sputtering, gas ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 160 شماره
صفحات -
تاریخ انتشار 2004